References

[BLN+20]

Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak. Lsq+: improving low-bit quantization through learnable offsets and better initialization. 2020. arXiv:2004.09576.

[COR+16]

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[DollarWSP09]

P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: a benchmark. In CVPR. 2009.

[FFFP04]

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In IEEE. CVPR 2004, Workshop on Generative-Model Based Vision. 2004.

[GB10]

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In International conference on artificial intelligence and statistics, 249–256. 2010.

[GDollarG+17]

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training imagenet in 1 hour. CoRR, 2017. URL: http://arxiv.org/abs/1706.02677, arXiv:1706.02677.

[Gra14]

Benjamin Graham. Fractional max-pooling. CoRR, 2014.

[GHP07]

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. Technical Report, 2007.

[HZRS15]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV '15, 1026–1034. 2015. doi:10.1109/ICCV.2015.123.

[HS97]

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997. doi:10.1162/neco.1997.9.8.1735.

[HSS+13]

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detection of traffic signs in real-world images: the German Traffic Sign Detection Benchmark. In International Joint Conference on Neural Networks, number 1288. 2013.

[IS15]

Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR, 2015.

[JLM10]

Vidit Jain and Erik Learned-Miller. FDDB: a benchmark for face detection in unconstrained settings. Technical Report UM-CS-2010-009, University of Massachusetts, Amherst, 2010.

[JYL19]

Qing Jin, Linjie Yang, and Zhenyu Liao. Towards efficient training for neural network quantization. 2019. arXiv:1912.10207.

[KB14]

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, 2014. URL: http://arxiv.org/abs/1412.6980, arXiv:1412.6980.

[Kri09]

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report, 2009.

[LBBH98]

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, volume 86, 2278–2324. 1998.

[LWX+11]

Jeffrey W. Lockhart, Gary M. Weiss, Jack C. Xue, Shaun T. Gallagher, Andrew B. Grosner, and Tony T. Pulickal. Design considerations for the wisdm smart phone-based sensor mining architecture. In Proceedings of the Fifth International Workshop on Knowledge Discovery from Sensor Data, SensorKDD '11, 25–33. New York, NY, USA, 2011. ACM. URL: http://doi.acm.org/10.1145/2003653.2003656, doi:10.1145/2003653.2003656.

[RG14]

A. Rakotomamonjy and G. Gasso. Histogram of gradients of time-frequency representations for audio scene detection. Technical Report, 2014.

[RDS+15]

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:10.1007/s11263-015-0816-y.

[SHK+12]

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from voverfitting. Journal of Machine Learning Research, 15:1929–1958, 2012.

[SSSI12]

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Networks, 2012. doi:10.1016/j.neunet.2012.02.016.

[XBD+17]

Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge J. Belongie, Jiebo Luo, Mihai Datcu, Marcello Pelillo, and Liangpei Zhang. DOTA: A large-scale dataset for object detection in aerial images. CoRR, 2017. URL: http://arxiv.org/abs/1711.10398, arXiv:1711.10398.

[ZDM19]

Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Residual learning without normalization via better initialization. In International Conference on Learning Representations. 2019. URL: https://openreview.net/forum?id=H1gsz30cKX.

[LuceyCohnKanade+10]

P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews. The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, volume, 94–101. June 2010. doi:10.1109/CVPRW.2010.5543262.

[Warden18]

P. Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. ArXiv e-prints, April 2018. URL: https://arxiv.org/abs/1804.03209, arXiv:1804.03209.

[WilsonRoelofsStern+17]

Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The Marginal Value of Adaptive Gradient Methods in Machine Learning. arXiv e-prints, pages arXiv:1705.08292, May 2017. arXiv:1705.08292.