DeepNet ======= Introduction ------------ In order to create a neural network in N2D2 using an INI file, you can use the DeepNetGenerator: .. testsetup:: * import numpy import pyn2d2 as N2D2 N2D2.CudaContext.setDevice(1) .. testcode:: net = N2D2.Network(seed=1) deepNet = N2D2.DeepNetGenerator.generate(net, "../models/mnist24_16c4s2_24c5s2_150_10.ini") Before executing the model, the network must first be initialized: .. testcode:: deepNet.initialize() In order to test the first batch sample from the dataset, we retrieve the StimuliProvider and read the first batch from the test set: .. testcode:: sp = deepNet.getStimuliProvider() sp.readBatch(N2D2.Database.Test, 0) We can now run the network on this data: .. testcode:: deepNet.test(N2D2.Database.Test, []) Finally, in order to retrieve the estimated outputs, one has to retrieve the first and unique target of the model and get the estimated labels and values: .. testcode:: target = deepNet.getTargets()[0] labels = numpy.array(target.getEstimatedLabels()).flatten() values = numpy.array(target.getEstimatedLabelsValue()).flatten() results = list(zip(labels, values)) print(results) .. testoutput:: [(1, 0.15989691), (1, 0.1617092), (9, 0.14962792), (9, 0.16899541), (1, 0.16261548), (1, 0.17289816), (1, 0.13728766), (1, 0.15315214), (1, 0.14424478), (9, 0.17937173), (9, 0.1518211), (1, 0.12860793), (9, 0.17310674), (9, 0.14563303), (1, 0.1782302), (9, 0.14206158), (1, 0.18292117), (9, 0.14831853), (1, 0.2224524), (9, 0.1745578), (1, 0.20414244), (1, 0.26987872), (1, 0.16570412), (9, 0.17435187)] API Reference ------------- .. autoclass:: N2D2.DeepNet :members: